

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SC	IENCE	0	652/32
Paper 3 (Core)		October/Novemb	er 2018

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

A copy of the Periodic Table is printed on page 20.

Electronic calculators may be used.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 18 printed pages and 2 blank pages.

1 hour 15 minutes

- 1 A floating platform is made from several large blocks.
 - (a) One of the blocks is shown in Fig. 1.1.

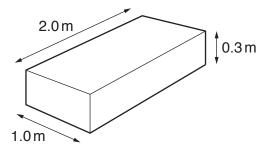


Fig. 1.1

(i) Use information from Fig. 1.1 to calculate the volume of the block.

volume = r	n^3	[1	1	
------------	-------	----	---	--

(ii) The mass of the block shown in Fig. 1.1 is 9.0 kg.

Calculate the weight of the block. State the unit.

[gravitational field strength $g = 10.0 \,\mathrm{N/kg}$]

(iii) Calculate the density of the block.

(b) A boat enters the harbour.

It approaches the floating platform and then stops.

A speed time graph is shown for this journey in Fig. 1.2.

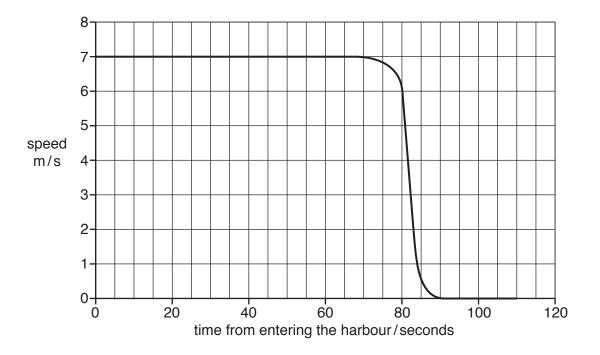


Fig. 1.2

Use the information in Fig. 1.2 to determine

/i\	the en	aad of	the h	noat v	whon	it ic	traval	llina	at	constant	Shaad
(1)	trie SD	eeu oi	me t	oai 1	wnen	IL IS	uave	IIII ICI	ลเ	CONSTAIN	Speed.

..... m/s [1]

(ii) the time taken from when the boat starts slowing down to when it stops.

..... s [1]

[Total: 7]

Chl	orine	is an element in Period 3 of the Periodic Table.
(a)	Nar	ne the group which contains chlorine.
		[1]
(b)	Nar	ne two metals in Period 3.
	1	
	2	[2]
(c)	Nar	ne one non-metal in Period 3 that is a solid at room temperature.
		[1]
(d)	Nar	ne one non-metal in Period 3 that is a gas at room temperature.
		[1]
(e)	(i)	Name one element in Period 3 which forms an acidic pollutant when combined with oxygen and water.
		[1]
	(ii)	Name this pollutant.
		[1]
		[Total: 7]

0652/32/O/N/18

2

Question 3 starts over the page

3 A worker is using a drill on a road surface.

The drill causes sound waves in the ground, as shown in Fig. 3.1.

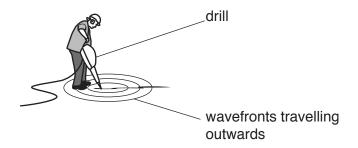


Fig. 3.1

(a) Fig. 3.2 shows a diagram of a wave travelling outwards.

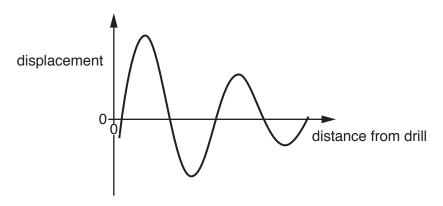


Fig. 3.2

(i) On Fig. 3.2, draw an arrow on the graph to show an **amplitude** of the wave.

Label this arrow with an A. [1]

(ii) On Fig. 3.2, draw an arrow on the graph to show the wavelength of the wave. Label this arrow with a W.

[1]

- (b) The drill makes a loud noise.
 - State how the sound is produced. (i)

.....[1]

(ii) Suggest the range of sound frequencies that humans can hear.

Include the unit in your answer.

..... to unit unit [3]

	(iii)	Sound waves cannot travel in a vacuum.
		Suggest why.
		[1]
(c)	The	drill is connected to an electrical supply using a lead of length 10 m as shown in Fig. 3.3.
	The	drill motor operates at its normal speed.
		drill bit lead
		Fig. 3.3
	(i)	The lead is replaced by a lead of length 50 m and the drill operates more slowly.
		State the effect on the current in the drill motor of using the longer lead.
		Explain your answer.
		effect
		explanation
		[2]
	(ii)	The insulation of the lead is damaged.
		State one hazard due to damaged insulation.
		[1]
		[Total: 10]
		Tiolai. 10

BLANK PAGE

© UCLES 2018

0652/32/O/N/18

4 C	Chlorine	forms	ionic	and	covalent	compounds
------------	----------	-------	-------	-----	----------	-----------

(a) Complete Table 4.1 which gives information about two compounds of chlorine.	
---	--

Table 4.1

name of compound	type of bonding	formula
hydrogen chloride	covalent	
	ionic	NaC <i>l</i>

		nydrogen chlonde	COVAIEIII		
			ionic	NaC1	
(b)	Giv	ve the formulae of the ions	present in NaC <i>l.</i>		
	ion	1			
	ion	1 2			[2]
(c)		aw a dot and cross diagrandride.	m to show the electron	arrangement in a molecule	of hydrogen
	Sh	ow the outer electrons only	/.		
					[2]
(d)	De	scribe the formation of pos	sitive ions and negative	ions.	
	pos	sitive ions			
	ne	gative ions			
					[2]

[Total: 8]

[2]

5 Fig. 5.1 is a section through a torch. The torch contains two cells in series, a lamp and component **P**.

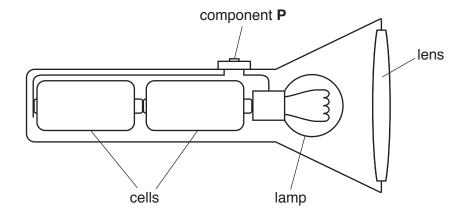


Fig. 5.1

(a) (i) Component P allows the torch to be turned on and off.

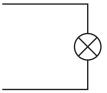


Fig. 5.2

(b) Another torch contains an arrangement with a lens, as shown in Fig. 5.3.

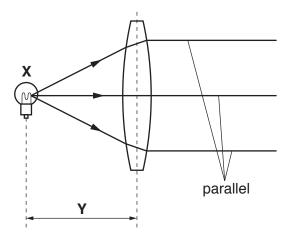


Fig. 5.3

A lamp is placed at point **X** at a distance **Y** from the centre of the lens.

Light from the lamp passes through the lens to form a parallel beam.

(i)	The rays of light change direction as they enter and leave the lens.
	Name this process and explain why it occurs.
	name of process

explanation	
	[2]

(ii) State the name of

> point X,

> distance Y.

(c) Fig. 5.4 shows the electromagnetic spectrum.

radio waves	micro- waves	A	↓	С	X-rays	gamma rays

Fig. 5.4

Name the regions **A** and **B**.

A B [2]

[Total: 10]

[2]

6 Hydrogen peroxide decomposes to form oxygen and water.

Fig. 6.1 shows the apparatus used to decompose hydrogen peroxide.

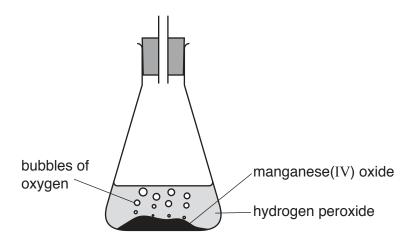


Fig. 6.1

- (a) Complete Fig. 6.1 to show how the oxygen is collected and its volume measured. [2]
- **(b)** Balance the equation for the decomposition of hydrogen peroxide.

$$....... H_2O_2 \rightarrow H_2O + O_2$$
 [1]

(c) The decomposition reaction is very slow without added manganese(IV) oxide.

Manganese(IV) oxide acts as a catalyst and speeds up the reaction.

State **one** other observation that shows that manganese(IV) oxide is a catalyst in this reaction.

[11]

(d) State a name for organic compounds acting as organic catalysts.

.....[1]

[Total: 5]

(a)	Sta	te two properties of a metal.	
	1		
	2		
			[2]
(b)	Cop	pper(II) oxide reacts with sulfuric acid to make a salt.	
	(i)	Name this salt and the other product of the reaction.	
		salt	
		other product	
			[2]
	(ii)	Explain how this reaction shows that copper(II) oxide is basic.	
			[2]
			[Total: 6]

7

8 Fig. 8.1 shows a cathode-ray oscilloscope (c.r.o.).

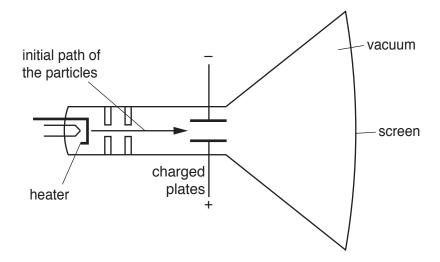


Fig. 8.1

(a) The heater emits particles by thermionic emission.

Name the particles emitted.

.....[1]

(b) Particles move from the heater to the screen. They pass between the charged plates.

The initial path of the particles is shown on Fig. 8.1.

On Fig. 8.1, complete the path of a particle until it hits the screen. [2]

(c) The particles are stopped by the screen.

Energy conversions take place.

Complete the diagram in Fig. 8.2 to show

- (i) the form of energy of the moving particles **before** the particles hit the screen, [1]
- (ii) the two energy forms of this energy **after** the particles hit the screen. [2]

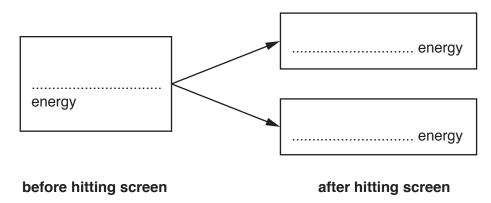


Fig. 8.2

[Total: 6]

9 Calcium oxide (lime) and calcium hydroxide (slaked lime) are made from calcium carbonate, as shown in Fig. 9.1.

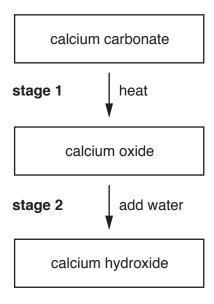


Fig. 9.1

(a)	Name a raw material which contains calcium carbonate. [1]
(b)	
	[1]
(c)	Stage 1, shown in Fig. 9.1, is an endothermic process.
	Describe the meaning of <i>endothermic</i> .
	[1]
(d)	Explain how a reaction can be <i>exothermic</i> even though energy is needed to break chemical bonds during the reaction.
	[0]

(e) Lime mortar is a mixture of slaked lime, sand and water. It is used to build brick walls as shown in Fig. 9.2.

Fig. 9.2

The lime mortar becomes hard by reacting with carbon dioxide from the air. This process is very slow and takes many years to complete.

Suggest why this reaction is very slow.	
	[1]
	[Total: 6]

10	Tritium is a radioactive isotope of hydrogen.												
	The	The symbol for tritium is 3_1 H.											
	(a)	(i)	Determine the number of protons in a tritium nucleus.										
				[1]									
		(ii)	Determine the number of neutrons in a tritium nucleus.										
				[1]									
	(b)	Triti	ium decays by the emission of a beta-particle $\binom{0}{-1}\beta$).										
		Cor	mplete the equation to show the radioactive decay of tritium.										
			$^{3}_{1}H$ \longrightarrow $^{\dots}_{\dots}He$ + $^{0}_{-1}\beta$	[2]									
	(c)	Triti	ium is used in watches to make them glow in the dark.										
		The	e half-life of tritium is about 10 years.										
		Des	scribe changes to the brightness of the watch over 50 years.										
		Exp	plain your answer.										
				[2]									
	(d)	Des	scribe how radioactive materials used in schools are stored in a safe way.										
				[1]									
				[Total: 7]									

Ethe	ene,	C ₂ H ₄ , forms poly(ethene) by addition polymerisation.
(a)	Nar	ne the feature of ethene which allows addition polymerisation.
		[1]
(b)	Dra	w the structure of a repeating monomer unit of poly(ethene).
		[2]
(c)	Pro	pene also forms a polymer by addition polymerisation.
	Sug	gest the name for this polymer.
		[1]
(d)	(i)	Ethene and propene are hydrocarbons.
, ,	.,	State what is meant by a <i>hydrocarbon</i> .
		[2]
	(ii)	State the name and formula of the hydrocarbon which is the main constituent of natural gas.
		name
		formula[2]
		[Total: 8]

© UCLES 2018 0652/32/O/N/18

11

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	² ¹	helium	. 01	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	55	Xe	xenon 131	98	牊	radon			
	=>			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Αŧ	astatine			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molonium —	116	_	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	=			5	В	boron 11	13	A^l	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	В О	cadmium 112	80	Нg	mercury 201	112	S	opemicium –
										29	on	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Ş										27	ဝိ	cobalt 59	45	格	modium 103	77	'n	iridium 192	109	¥	meitnerium -
		-]	hydrogen 1							26		iron 56		R	ruthenium 101	92	SO	osmium 190	108	£	hassium
							,			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Kev	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	<u>Б</u>	tantalum 181	105	g O	dubnium -
					atc	re				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	99	Ba	barium 137	88	Ra	radium
	_			8	=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	Ŧ	francium -

Lu Lu	lutetium 175	103	ئ	lawrencium	
° A	ytterbium 173	102	8	nobelium	
e9 Tm	thulium 169	101	Md	mendelevium	
₈₈ <u>п</u>	erbium 167	100	Fm	fermium	
67 Ho	holmium 165	66	Es	einsteinium	
° A	dysprosium 163	86	ర	californium	
e5 Tb	terbium 159	97	番	berkelium	
²⁰ Gd	gadolinium 157	96	Cm	curium	
es Eu	europium 152	92	Am	americium	
62 Sm	samarium 150	94	Pn	plutonium	
Pm	promethium -	93	ď	neptunium	
© P Z	neodymium 144	92	\supset	uranium 23.8	2007
59 Pr	praseodymium 141	91	Ра	protactinium 231	107
Ce SS	cerium 140	06	Ч	thorium	202
57 La	lanthanum 139	88	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).